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Abstract
We investigate properties of charge detection and detection-induced dephasing of a charge qubit
interacting with an electron beam collider composed of a quantum point contact. We predict
that the interference of the qubit is fully restored when the two inputs are identically biased so
that all the electrons suffer two-electron collision, unlike the case without collision. This
phenomenon is related to Fermi statistics and illustrates the peculiar nonlocality of dephasing.
We also describe the detection properties of entangled electron pairs. For singlet pairs, the
sensitivity of charge detection is enhanced which originates from the bunching behavior of
electrons. This demonstrates that control of exchange statistics of particles can help sensitive
charge detection.

In a two-path interferometer with a which-path (WP)
detector, the observation of interference and acquisition
of the WP information are mutually exclusive [1–3]. It
has been shown that dephasing (i.e. reduction of the
interference) can be understood either as the acquisition of
the WP information or as the back-action caused by the
detector [3]. However, it has been argued that the back-
action dephasing has not simply occurred as a result of the
classical momentum kick in some cases [4–7]. Owing to the
recent advances in nanotechnology, mesoscopic devices now
provide opportunities for investigating this issue. Indeed, WP
detection in quantum interferometers has been achieved by
using mesoscopic conductors [7–11]. In these experiments, a
quantum point contact (QPC) was used as a WP detector by
probing the charge of a single electron at a nearby quantum
dot [7–10] or a ballistic two-path conductor [11]. The
particular set-up we consider here is schematically drawn in
figure 1: a charge qubit interacting with a QPC beam collider
having four (two input and two output) electrodes. It has been
theoretically well understood that the dephasing of the qubit is
caused by the charge detection when uncorrelated electrons are
injected from only one of the source electrodes and partitioned
by the QPC (that is, when the QPC does not suffer from
electron collision) [6, 12–19].

In this paper, we report our investigations of the dephasing
properties of the qubit when the detector electrons, injected

(a)

(b)

Figure 1. (a) A schematic diagram of a charge qubit electrostatically
coupled to a detector composed of a beam collider and four (two
input and two output) electrodes, (b), which can be realized, for
instance, by using the quantum Hall bar and quantum point contact.

from the two input electrodes, collide at the QPC. We find that
the dephasing is suppressed (i.e. the interference is preserved)
as a result of the two-particle collision, in spite of charge
sensitivity of the scattering coefficients at the QPC. When the
two electrons, injected from the two different inputs, collide
at the QPC, Fermi statistics leads to antibunching of electrons.
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As a result, two electrons coming from the two input leads are
transferred to the two different output leads because of Pauli’s
exclusion principle manifested in two-particle interference.
The antibunching of electrons makes it impossible, even in
principle, to extract the information of the charge state. We
argue that this shows the nonlocal nature of dephasing. In
the case that the two input electrodes emit entangled pairs,
charge detection sensitivity depends on the parity of the two-
particle state. For triplet pairs, the exchange statistics are
equivalent to that of independent fermions. However, for
singlet pairs, the two-particle interference leads to bunching
of electrons, which enhances the charge sensitivity. Our
prediction indicates two important features: (1) a particle-like
behavior of a quantum state emerges from the information
itself, rather than from interaction-induced disturbance [6, 7]
and (2) the control of exchange statistics can be used to achieve
higher charge sensitivity of a mesoscopic detector.

The system under consideration is composed of a charge
qubit interacting with a QPC detector having four electrodes
(figure 1(a)). This kind of detector can be constructed
with the quantum Hall bar and split gates as schematically
drawn in figure 1(b). One could also make use of the
interference between the two output beams (dashed lines of
figures 1(a) and (b)) for a phase-sensitive charge detection.
Constructing interference [20] far away from the qubit does
not influence dephasing of the qubit, but controls the efficiency
of detection [18, 21]. The electron spin is neglected at this
moment. (Charge detection with spin-entangled electrons is
discussed later.) The qubit, composed of two states, namely
|0〉 and |1〉, may either be a quantum dot [7, 8], double
quantum dot [9] or a two-path interferometer [11]. Creation
(annihilation) of an electron at each electrode x (∈ α, β, γ, δ)
is represented by the operator c†

x (cx ). The characteristics of
the scattering of an electron at the QPC is accounted for by the
scattering matrix

Si =
(

ri t ′
i

ti r ′
i

)
, (1)

depending on the charge state i (∈ 0, 1) of the qubit, which
transforms the electron operators as(

cγ
cδ

)
= Si

(
cα
cβ

)
. (2)

Charge detection and dephasing induced by the detection
have been extensively studied previously when one of the input
electrodes injects uncorrelated electrons [6, 12–19]. In our
set-up of figure 1, this situation can be reproduced when one
of the input electrodes is biased and all the other electrodes
are grounded. For later purposes, first we briefly review the
detector-induced dephasing in this case. When an electron is
injected from input α, the wavefunction, |ψ〉, is composed of
the individual wavefunctions of the qubit, a0|0〉 + a1|1〉, and
the detector state, c†

α|F〉. (|F〉 denotes the Fermi sea of all the
electrodes with energy lower than zero.) Upon interaction of
the detector electron with the qubit, it evolves as

(a0|0〉 + a1|1〉)⊗ c†
α|F〉 → a0|0〉⊗ |χ0〉+ a1|1〉⊗ |χ1〉, (3)

where |χi〉 = (ri c†
γ + ti c

†
δ )|F〉 (i = 0, 1). This results in

an evolution of the reduced density matrix ρ of the qubit,

ρ = Trdet|ψ〉〈ψ|, obtained by tracing over the detector states
of equation (3):

ρi j = ai a
∗
j → ai a

∗
j 〈χ j |χi〉 = ai a

∗
j (rir

∗
j + ti t

∗
j ). (4)

This leads to suppression of ρi j for i 	= j , which gives rise
to dephasing of the qubit state upon continuous injection of
detector electrons.

Now, let us consider the situation when electrons are
injected from both of the input electrodes α and β so that two
electrons collide at the QPC. In this case, the initial detector
state, c†

αc†
β |F〉, evolves into

|χi〉 = (ri c
†
γ + ti c

†
δ )(t

′
i c

†
γ + r ′

i c
†
δ )|F〉,

where i denotes the charge state of the qubit (being i = 0 or 1).
Considering Fermi statistics, {cx , c†

y} = δxy , we find

|χi〉 = (rir
′
i − ti t

′
i )c

†
γ c†
δ |0〉 = eiθi c†

γ c†
δ |F〉, (5)

where θi = arg (rir ′
i ) = arg (ti t ′

i )+π is the global phase of Si .
The latter equality of equation (5) is a result of the unitarity of
Si . As a result of two-particle interference and Fermi statistics,
the detector state of equation (5) has only one particular
possibility, that each electron propagates into different output
leads, γ and δ, respectively (so-called ‘antibunching’). This
implies that the evolution of the density matrix of the qubit is
given as

ρi j = ai a
∗
j → ai a

∗
j 〈χ j |χi〉 = ai a

∗
j e

i(θi −θ j ). (6)

The magnitude of off-diagonal components of the density
matrix is invariant upon collision. Therefore, the two-particle
collision in the detector does not reduce the interference, unlike
in the case of single-particle scattering.

To be specific, we consider a general case with many
electrons injected from the two input electrodes α and β biased
by Vα and Vβ (Vα � Vβ > 0), respectively. The two output
electrodes are grounded (Vγ = Vδ = 0). The state of the
composite qubit–detector system initially given as

(a0|0〉 + a1|1〉)⊗
⎡
⎣ ∏

0<ε�eVβ

c†
α(ε)c

†
β(ε)

∏
eVβ<ε′�eVα

c†
α(ε

′)|F〉
⎤
⎦ ,
(7)

gets entangled upon interaction between the two subsystems as

a0|0〉 ⊗
∏

0<ε�eVα

χ
†
0 (ε)|F〉 + a1|0〉 ⊗

∏
0<ε�eVα

χ
†
1 (ε)|F〉, (8)

where (i = 0, 1)

χ
†
i (ε) =

{
eiθi c†

γ (ε)c
†
δ (ε) 0 < ε < eVβ

ri c
†
γ (ε)+ ti c

†
δ (ε) eVβ < ε < eVα.

(9)

From this we obtain the time dependence of the reduced
density matrix:

log [ρi j(t)] = log [ρi j(0)] +
∑
ε

log λi j(ε), (10)
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where λi j(ε) corresponds to the indistinguishability parameter
of the detector electrons with energy ε (just as in 〈χ j |χi〉 for
the simpler cases in equations (4) and (6)). We find

λi j(ε) = 〈F |χ j (ε)χ
†
i (ε)|F〉

=

⎧⎪⎨
⎪⎩

ei(θi −θ j ) 0 < ε < eVβ
r∗

j ri + t∗
j ti eVβ < ε < eVα

1 otherwise.

(11)

At time t 
 h/eVα, where the energy–time phase
space is much larger than h, the summation

∑
ε can be

replaced by t
∫

dε/h. In this limit, we obtain |ρ01(t)| =
|ρ01(0)| exp (−dt) with the dephasing rate d given by

d = −
∫

dε

h
log |λ01(ε)|, (12)

and we get

d = −e|Vα − Vβ |
h

log |r0r∗
1 + t0t∗

1 |. (13)

Note that the effect of inelastic scattering in the detector is
not considered here. The contribution of inelastic scattering
to dephasing is negligible if the electron escape rate in the
qubit is much smaller than eV/h̄, which is the case for a
weak continuous measurement. In the weak coupling limit
(r0r∗

1 + t0t∗
1 ∼ 1), the dephasing rate can be expanded in

terms of the change in the transmission probability, �T =
|t1|2 − |t0|2, and the change in the relative scattering phase
�φ = arg(t1/r1)− arg(t0/r0). This expansion results in

d = T + φ, (14)

T = e|Vα − Vβ |
h

(�T )2

8T (1 − T )
, (15)

φ = e|Vα − Vβ |
2h

T (1 − T )(�φ)2, (16)

where T = (|t1|2 + |t0|2)/2.
Equations (13)–(16) are our central result for the collision

of electrons from independent sources. When only one of the
input electrodes α injects electrons, that is for Vα > 0 and
Vβ = 0, equations (13)–(16) are reduced to the previously
studied dephasing rate through partitioning the uncorrelated
electrons [12–19]. Turning on the bias of the other input
β results in the decrease of the dephasing rate in spite of
the increasing number of detector electrons. For identical
input biases, Vα = Vβ , the dephasing rate vanishes (note
that the system is not in equilibrium since we are considering
the limit Vα = Vβ > Vγ = Vδ = 0). This intriguing
result originates from the two-electron collisions which do not
reduce the interference in the qubit and can be understood as
follows. As shown in equation (5), two electrons cannot scatter
into the same output lead because of Fermi statistics. This
‘antibunching’ makes the transport noiseless [22]. Therefore,
output currents at leads γ and δ are insensitive to the charge
state of the qubit (�T in the scattering coefficients plays no
role). Furthermore, the phase sensitivity �φ does not affect
the detector in any noticeable way when an interferometer is

Figure 2. A schematic diagram of a charge qubit and a detector that
injects spin-entangled electrons.

constructed between the two output leads. Therefore, charge
detection is impossible, even in principle, through the two-
electron collision.

Our result indicates the nonlocality of dephasing. The
origin of dephasing can be interpreted either by information
acquisition in the detector, or by back-action of the
detector, causing the random fluctuation of the phase in the
qubit [3]. The ‘back-action dephasing’ is often identified
with ‘momentum kick’ or local ‘disturbance’ imposed by the
uncertainty principle [1]. In the ‘back-action’ interpretation,
one might be tempted to assume a picture that the local
Coulomb interaction exerts force (or a momentum kick) to the
qubit, leading to uncertainty of the phase. However, our result
shows that this naive picture should be discarded. Injecting
additional electrons at lead β does not affect the scattering
matrix of equation (1) as long as lead β is far apart from
the qubit. If the local disturbance were the only origin of
dephasing, increasing Vβ would always monotonically raise
the dephasing rate due to the increment of detector electrons.
However, as we find above, the two-electron collision does
not contribute to dephasing in spite of charge sensitivity of
the scattering matrix, and it is a result of the nonlocality of
dephasing. We emphasize that the particle-like behavior of the
qubit emerges only when the charge state information could
be acquired in the detector, even if it could be done only in
principle [6, 7, 21].

It should also be noted that this nonlocality is not just a
result of an extended wavefunction through the different leads.
Let us consider a situation where the wavepacket size (which is
inversely proportional to the bias voltage) is much smaller than
the conducting regions between the leads. Our prediction is
still valid in this limit, and thus the nonlocality does not simply
mean an extended wavefunction. In other words, our result
does not depend on whether or not the wavepacket extends over
the different leads.

Next, let us consider injection of spin-entangled electrons
from the two input leads identically biased with V (figure 2).
Some possible implementations of the spin-entangled electrons
in solid-state circuits are found in [23]. The ‘entangler’ injects
spin-entangled electrons to the leads α and β . The scattering
matrix at the QPC is assumed to be spin-independent and is
given by equation (1). The injected entangled triplet (singlet),
prior to scattering at the QPC, is written as [24]

1√
2
(c†
α↑c†

β↓ ± c†
α↓c†

β↑)|F〉, (17)

where ↑ and ↓ represent the spin state of an electron. The
+(−) sign in equation (17) corresponds to the triplet (singlet)
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state. Upon collision at the QPC it is reduced to the qubit-
charge-dependent detector state |χ t (s)

i 〉 given by

|χ t (s)
i 〉 = 1√

2
{(ri c

†
γ↑ + ti c

†
δ↑)(t

′
i c

†
γ↓ + r ′

i c
†
δ↓)

± (ri c
†
γ↓ + ti c

†
δ↓)(t

′
i c

†
γ↑ + r ′

i c
†
δ↑)}|F〉.

Again, Fermi statistics, {ciσ , c†
jσ ′ } = δi jδσσ ′ , is crucial in

characterizing the detector properties. We find that the triplet
state is simplified as

|χ t
i 〉 = 1√

2
eiθi (c†

γ↑c†
δ↓ + c†

γ↓c†
δ↑)|F〉, (18)

which leads to the indistinguishability parameter λi j of
equation (10) as

λi j (ε) =
{

ei(θi −θ j ) 0 < ε < eV

1 otherwise.
(19)

As we find from equations (10) and (19), the dephasing
rate vanishes when the input electrodes inject triplet pairs
just as in the collision of independent electrons. This is
again due to the antibunching of the orbital wavefunction of
electrons which provides a noiseless beam upon collision.
The orbital wavefunction of the triplet state is antisymmetric
under exchange, and its statistics is equivalent to that of the
independent fermions [24].

In contrast, the orbital wavefunction of the singlet is
symmetric under two-particle exchange. Therefore we expect
the detection property to be equivalent to that of bosons.
Indeed, collision of the singlet pair at the QPC leads to the
detector state of the form

|χ s
i 〉 = √

2
[
ri t

′
i c

†
γ↑c†

γ↓ + ti r
′
i c

†
δ↑c†

δ↓
+ 1

2 (ti t
′
i + rir

′
i )(c

†
γ↑c†

δ↓ + c†
δ↑c†

γ↓)
]|F〉. (20)

This singlet detector state, in contrary to those of the
triplet (equation (18)) and of the two independent electrons
(equation (5)), has a ‘bunching’ property, which enhances the
shot noise [24]. The bunching is perfect for the symmetric
partitioning at the QPC (that is |ti | = |ri | = 1/

√
2), where

ti t ′
i +rir ′

i = eiθi (|ri |2−|ti |2) = 0. In this case, the two electrons
are always found at the same lead (γ or δ). Moreover, this
bunching enhances the charge sensitivity of the detector. For
the detector injecting singlet pairs, we find that the dephasing
rate s

d is given as

s
d = −2eV

h
log |λs

01|, (21)

where λs
01 = 〈χ s

1 |χ s
0 〉 = 2(r∗

1 t ′∗
1 r0t ′

0 + t∗
1 r ′∗

1 t0r ′
0) + (t∗

1 t ′∗
1 +

r∗
1 r ′∗

1 )(t0t ′
0 + r0r ′

0) is the indistinguishability factor for a singlet
pair. The factor 2 on the right-hand side of equation (21)
comes from the spin degeneracy, which was not taken into
account in equation (13). In the weak measurement limit, s

d
is given by an algebraic sum of the two different contribution:
s

d = s
T +s

φ , where the current-sensitive (s
T ) and the phase-

sensitive (s
φ) contributions are given as

s
T = eV

h

(�T )2

T (1 − T )
, (22)

s
φ = eV

h
4T (1 − T )(�φ)2. (23)

The dephasing rate is now enhanced (by eight times)
compared to the case with only one electrode injecting
uncorrelated electrons (Vβ = 0, Vα = V in equation (16)).
Taking into account the simultaneous injection from the
two inputs and the spin degeneracy, the number of injected
electrons for a given time is four times larger in the case of
injecting singlet states. This means that the charge sensitivity
of the singlet pairs is twice that compared to the uncorrelated
single electrons. It is noteworthy that this scheme can be
utilized to achieve more precise charge detection in realistic
devices1.

In conclusion, we have analyzed the properties of charge
detection in a QPC when the electrons from different inputs
collide. We have found that the properties of dephasing are
determined by the statistics of the incident electrons, and
demonstrated the nonlocality of dephasing. This verifies
that, while the dephasing is directly related to the which-path
information in general, it cannot be simply understood in terms
of a local disturbance that washes out the coherence. We
have also pointed out that control of exchange statistics can
be utilized to make a charge detector with higher sensitivity.
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